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1. INTRODUCTION

The structure of fluctuating interfaces has been a major subject of study in
recent years.(1,2) Most of these studies concern the large scale properties of
a rough interface separating two phases. The recent spurt of interest in this
subject started with the proposal of a nonlinear evolution equation for the
interface height h(x, t) by Kardar, Parisi and Zhang (KPZ) one decade
ago.(3) KPZ argued that consistent with the symmetries of the interface, the
lowest order nonlinear term in the growth equation is proportional to
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We define a new model of interface roughening in one dimension which has the
property that the minimum of interface height is conserved locally during the
evolution. This model corresponds to the limit q -> oc of the (q-color dimer
deposition-evaporation model introduced by us earlier [ Hari Menon and Dhar,
J. Phys. A: Math. Gen. 28:6517 (1995)]. We present numerical evidence from
Monte Carlo simulations and the exact diagonalization of the evolution
operator on finite rings that growth of correlations in this model is subdiffusive
with dynamical exponent z=2.5. For periodic boundary conditions, the varia-
tion of the gap in the relaxation spectrum with system size appears to involve
a logarithmic correction term. Some generalizations of the model are briefly
discussed.
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(Vh)2. Hence in a large number of physical situations the growing interface
can be described by a noisy Burgers equation. In 1 + 1 dimensions this
nonlinear term is the most relevant perturbation, and it gives rise to a
dynamical universality class characterized by the value of the dynamical
exponent z = 3/2. Addition of higher order nonlinear terms, consistent with
the symmetries, will not change the value of z.

Though this is indeed the case found in many physical situations, there
are cases where the correlations of the interface are not described by KPZ
exponents. For example, if there are some constraints present for the
growth, we can expect the relaxation of the interface to become slower.(4,5)

Some generalizations of the KPZ equation where the scalar height
variable is replaced by an N-component vector,(6) or an NxN matrix(7)

have been studied. But in both these cases it was found that the value of
z remains unchanged in 1 + 1 dimensions.

In this context, it is interesting to note that recently a class of deposi-
tion-evaporation models has been studied which in 1 + 1 dimensions can be
mapped to interface roughening models where the height variables are 2x2
matrices.(8-14) Monte Carlo simulations and numerical diagonalization
studies have shown that these models do not belong to the KPZ dynamical
universality class.(12-13) In special cases, when the steady state shows long
range spatial correlations, it was found that the fluctuations relax very
slowly with z K 5/2. An example of this is the trimer deposition-evaporation
(TDE) model.(8) Numerical diagonalization studies on small lattices shows
that z SE 2.5 for this model.(12) Another example is the q-color dimer deposi-
tion-evaporation (qDDE) model for q>2.(13) Numerical studies suggests
that this model is in the same universality class as the TDE model. (For
the case of q - 2, qDDE model reduces to the exactly solved Heisenberg
model, for which z = 2.(18)) Note that this value of z is quite different from
the values z near 4 for the conserved KPZ equation discussed in refs. 4, 5.

A physically quite different, but mathematically related, problem
where the same z ~ 2.5 exponent is encountered is the motion of ring
polymers in a gel medium.(15) In this case Obukhov el al. have given
heuristic scaling arguments that z = 5/2.(16) Some of these have been
justified by Alon and Mukamel(17) using the fact that the probabilities of
different configurations of the ring polymer in the steady state are exactly
known. However, the result is still not rigorously established. Thus, it
seems desirable to find a simpler model in this universality class that is
better tractable analytically, and the dynamical behavior determined
without using any not-obvious assumptions.

It is well known that many spin models become simpler, and in some
cases even exactly solvable, in the limit when the number of components of
the spin tends to infinity.(18) This has motivated us to the study of the
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qDDE model in the limit of q-» oo. Our main result is that in this limit,
the qDDE model reduces to a simpler interface growth model with scalar
heights. This interface model has an interesting constraint that the minimum
height of the interface is conserved locally during the growth. This new
model is somewhat simpler than the earlier models. The steady state of
this model can be determined exactly however we have not succeeded in
making much headway towards a full analytical solution so far. The model
is interesting, and deserves further study for two reasons. Firstly, such a
constraint seems to be of a qualitatively new kind, which has not been
studied in the past. Since it affects the long-time behavior, it would be
expected to have a continuum description. However, a local continuum
evolution equation involving a finite number of derivatives which incorpo-
rates this constraint seems difficult to write down. Secondly, our numerical
studies show the presence of logarithmic correction to the power-law scaling
of the gap, which seems to be boundary condition dependent: it is present in
the interface model, but not in the qDDE model. This unexpected feature also
remains unexplained so far.

This paper is organized as follows: In Section 2 we define the interface
model, and write down the stochastic matrix as the Hamiltonian of a quan-
tum mechanical spin chain. We argue that conservation of minimum height
locally in the model makes the relaxation slow. In Section 3 we calculate
the average height of the interface in the steady state for a ring of size L,
and show that this grows as L1/2 for large L. In Section 4 we recapitulate
the definition of the qDDE model and briefly list its known properties.
In Section 5 we study the dynamics of the qDDE model in the limit of
large q. We show that in this limit the model simplifies, and for time scales
much greater than l/q the model can be described by an effective Markovian
dynamics. In Section 6 we establish an equivalence between this effective
dynamics and the dynamics of the interface model defined in Section 2. In
Section 7 we study this interface model using both Monte Carlo simula-
tions and numerical diagonalization of the stochastic matrix for small
lattice sizes. These studies show that this interface model is in the same
universality class as the TDE model and the qDDE model with finite q > 2,
In Section 8 we briefly discuss the case of asymmetric rates for h-> h + 2
and h-h — 2. We also propose some higher dimensional generalizations of
this interface model, which still conserve the minimum height of the inter-
face locally.

2. DEFINITION OF THE INTERFACE MODEL

We consider the interface model on a one-dimensional lattice of size L.
At any given time, the interface is specified by the integer height hi at each
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for all i and all times. The interface evolves by the following Markovian
local dynamics: at every site the interface height can be changed from hi to
either hi + 2 or hi — 2 with some rates, provided this will not violate the
RSOS condition. The rates for the transition hi —> hi± 2 depends on the next
neighboring heights h i _ 2 and h i + 2 .

Equivalently, we can specify the interface in terms of slope variables
ni= [hi+1 —hi+ l]/2, which takes only values 0 and 1. Then change in the
height at site ;' corresponds to the exchange of the variables n at sites i and
i— 1. If we think of n's as occupation variables of a hard core lattice gas,
this corresponds to the well-known exclusion process, with hopping rates
between sites i and i + 1 depends on the occupation at sites i — 1 and i + 2.
In our model we assume that the rate for the rightward and leftward
hoppings (or h i-»h i+ 2 and hi-»hi — 2) are the same. Then there are 4
hopping rates, depending on the four possible states of the sites z — 1 and
z + 2. Let us call these rates A,, A2, A3 and A4. These are shown in Fig. 1.
At time t = 0, the interface height hi is given to be 0 if z is odd, and 1 if z
is even. At the boundaries, we can work with fixed boundary conditions
corresponding to choosing the height to be 0 at i = 0 and L + 1 at all times.
In numerical work we have used periodic boundary conditions so that
hL + 1=h1 .
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site z of the lattice. The heights are assumed to obey the restricted solid-on-
solid (RSOS) condition

Fig. 1. Transition rates of the interface growth model.



where Amin and Xmax are the smallest and largest values in a given {A,}.
Now, AE(1, 1, 1, 1) is the lowest relaxation rate in the Rouse model,

and it is known that for a ring of size L, it decreases as L-2 for large L.
This implies that so long as lmin and Xmax are finite, AE({k,}) decreases as
L~2 for large L, and the dynamical exponent z remains 2. However, if Am/(I

becomes 0, then there is a possibility that we get a different universality
class. In this paper, we study the case when A4 = 0, and all other A's are non-
zero. [The case A! = 0, all other A's nonzero is equivalent to this.] To keep
the interface model transition rules left-right symmetric, we assume in addi-
tion that A2 = A3.

An important consequence of choosing A4 = 0 is that minimum of
{/i,_2, f i t _ i , ht, /!, + 1, hi+2] is conserved during a change of heights at /.
This implies, in particular, that this interface dynamics conserves minimum
of the full interface profile {/!,-}. The constraint that minimum height is
locally conserved is a strong constraint that makes the dynamics slower than
the Rouse dynamics. Note that the conclusion z ^ 2 for our model follows
immediately from the inequality (3).

As an illustration of this, consider the transition in Fig. 2 from the
initial configuration I to final configuration F. Both these configurations
are allowed, but to go from I to F, it takes a long process of restructuring.
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When the hopping rate between sites i and i+ 1 is independent of ni-1

and ni+2 (simple exclusion process), the corresponding interface growth
is described by the Hammersley-Edwards-Wilkinson equation,(22,23) or
equivalently, by the Rouse model of polymer dynamics.(19) This special case
is exactly soluble, and the dynamical exponent z is known to be 2.

Even in the general case, with arbitrary {A, • } , the detailed balance con-
dition is satisfied and in the steady state all allowed configurations occur
with equal weight. If all the rates A,, /'= 1 to 4 are nonzero, then it is easy
to see that qualitative behavior of the relaxation is not changed much. Let
AE(ki, A2, A3, A4) is the smallest nonzero eigenvalue of the relaxation
matrix. The relaxation matrix is symmetrical, and can be thought of as the
force matrix of a system of mass points connected by springs with spring-
constants A,-. As the eigenfrequencies are nondecreasing functions of the
spring constants, it follows that

It is then easy to deduce that
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The shortest route is to first completely erase one of the two "mountains",
and then rebuild the final structure F from that. It is easy to convince
oneself that other routes, essentially equivalent and requiring as many
steps, are possible, but none requiring fewer can be found. For a pair of
mountains of size L each, to go from I to F it takes order L2 steps. In
contrast in Rouse dynamics F can be reached from I in one step.

The constraint that minimum of height is locally conserved is approxi-
mately realized in some physical situations, which give rise to surface
morphology sometimes known as "wedding cake" morphology with average
width of surface increasing approximately linearly with the average height.(20)

These are understood in terms of the existence of step-edge energy barriers
of the Ehrlich-Schwoebel type, which inhibit jumps of atoms from higher
steps to lower steps.(21) Clearly, this makes growth at height minima less
likely. In the Monte Carlo simulations of Krug and Schimschack, the sur-
face generated have deep ridges which seem to survive for a long time. Our
model is simpler than theirs, but generates shapes of surfaces qualitatively
similar. In particular, in both cases fluctuations in height are of the same
order as mean height.

It is quite straightforward, but instructive, to write the stochastic
matrix of the interface model as a quantum Hamiltonian H. We consider a
chain of L quantum mechanical spins {S i},i = 1 to L. To each configuration
{n i}, we associate a spin configuration {Sz

i} by the rule n, = (1 +Sz
i)/2.

Then it is easily seen(24) that the quantum-mechanical Hamiltonian corre-
sponding to our model is

where the function f takes arbitrary positive values except that
f( — 1, +1) = 0. This is a four spin interaction Hamiltonian, which is not
yet tractable analytically. Note that the Hamiltonian is not left-right sym-
metric though the original height model is. This is due to the fact the trans-
formation from hi to ni, breaks the reflection symmetry. It is invariant only
under the simultaneous interchange x «-> —x and n <-> 1 — n.

Fig. 2. An example of two configurations where it takes order of L- steps to reach one form
the other.
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3. STEADY-STATE PROPERTIES OF THE INTERFACE

Starting from an initial profile, the interface will grow until the system
reaches a steady state. The average interface height in the steady state (the
saturation height) can be computed exactly by mapping the interface
profiles to paths of a random walk that is not allowed to cross the origin.
Since the interface heights satisfy hi+1 =h/±l, the set {/7,} forms the path
of a random walk if we imagine h and i as space and time co-ordinates. The
constraint that the walk is not allowed to cross the origin comes from the
fact that the interface height at any point can not be negative.

Since the rules of the interface dynamics obey detailed balance, all
accessible interface configurations have equal weight in the steady state.
The average height of the interface then corresponds to the average dis-
placement of the random walk from the origin, this can be computed
exactly as follows: let us assume periodic boundary conditions and L = 2n,
an even integer. We pick a point at random on the ring, and call it the
origin. The number of configurations where height at the origin is h is given
by the number of paths from (i = 0,h) to (i = 2n,h) which touches the line
h = 0 but do not fall below. Let us denote this number by N[(0, h);
(2n, h ) ] . If we denote N j [ ( 0 , h); (2n,h)] the number of paths from (0, h) to
( 2 n , h ) which do not fall below the line h =j,

822/90/1-2-5
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From the well known reflection principle,(25)

where M[(0, h); (2n, h')] denotes the number of paths from (0, h) to
(2n,hr) with no constraint on the path. Hence

Since

where,
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which increases as y/Tr/8 L1/2 for large L. For an infinite system this means
that starting from a profile which has the minimum possible heights
({h i} = {0, 1, 0, 1,...}), the average interface height will always grow.
However due to the conservation of minimum height, it will always be
tethered to h = 0 at least at one point. A similar situation occurs in the
wetting problem, say in the Ising model below its critical temperature,
when the boundary conditions at the two opposite ends of cylinder prefer
two different values of magnetization and thus create a boundary between
the predominantly up and predominantly down phases. If this domain
boundary is near one of the ends of the cylinder in the beginning, it moves
away from it with time under single-spin-flip dynamics. The driving force
here, as in the problem we study, is due to higher entropy of the domain
wall away from the surface, while the evolution rules are reversible and do
not favor any particular phase.

4. A BRIEF REVIEW OF THE qDDE MODEL

The qDDE model is defined as follows: Consider a (d-dimensional
lattice, where at each site there is a discrete variable which can take q
distinct discrete values (colors). The system undergoes a continuous time
Markovian dynamics with the update rule that with rate 1 two neighboring
spins having the same color, can simultaneously change their color to any
of the other (q — 1) colors. For example consider the case of q = 3, and let
a, b and c denote the 3 colors. An aa pair can become a bb pair or a cc
pair with rate 1. In the same manner bb and cc pairs can change their
color. The dynamical rule for this case can be stated as in Fig. 3.

The qDDE model has been studied in detail in 1 + 1 dimensions.(13)

The main feature of the model is that its phase space breaks up into an
exponentially large number of dynamically disconnected sectors. The num-
ber of sectors scales as ( q — 1 ) L with system size. This strong nonergodic
behavior is due to the presence of a conserved quantity in the model, called
irreducible string (IS) which is defined as follows: A configuration of the
qDDE model on a linear chain of length L can be represented by a string
of L characters where the ith character represents the color of the ith spin.

Therefore the average height is given by
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From this string delete all pairs of adjacent characters that are the same.
Repeat this procedure on the resulting string until a string with no
immediate repetition of characters is obtained. This string, whose length
can not be reduced further by this reduction algorithm is the IS corre-
sponding to given configuration. It can be shown that IS is conserved
during the qDDE dynamics and each sector has a distinct IS.(13) As a con-
sequence, IS can be used to uniquely specify a sector. The special sector for
which the irreducible string is a null string (the original string is completely
reducible) is called the null sector and it has long-range correlations in the
steady state. The relaxation time of fluctuations in this sector also diverges
with system size.

In any given sector, in the steady state all the configurations of that
sector occur with equal probability. This follows from detailed balance. The
number of configurations in each sector can be computed exactly, and it
typically grows as exp(L). For example, in the null sector the number of
configurations grows as [4(q-1)] L / 2 .

In addition to IS, the qDDE model in one-dimension has another set
of conserved quantities which corresponds to a symmetry called recoloring
symmetry in the model. A qDDE configuration can be represented by the
configuration of a polymer chain on a q-coordinated Bethe lattice. To see
this, consider a q-coordinated Bethe lattice with its bonds colored with q
different colors such that all the bonds meeting at any given site have dif-
ferent colors. We define the polymer chain corresponding to a given qDDE
configuration as the L step walk which starts from the origin and follows
the sequence of bonds such that their color is in the same sequence as the
colors in the qDDE configuration from site 1 to site L. The chain may
traverse a bond more than once. By definition, one end of the polymer is
fixed at the origin. The conservation of the IS implies that the other end
of the polymer chain is also fixed. Different positions of the second end-
point corresponds to different sectors. Thus there is a one-to-one corre-
spondence between the L step polymer chain configurations on the Bethe
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lattice and the configurations of the qDDE model. In this representation,
the qDDE dynamics corresponds to a kind of reptation motion of the
polymer chain on the Bethe lattice. A kink, consisting of two adjacent steps
of the polymer chain where an immediate retraversal occurs, can jump to
one of the neighboring sites on the Bethe lattice. The rules of the dynamics
of the polymer chain are independent of the color of the bonds and hence
recoloring of the bonds is a symmetry of the model. Note that this recolor-
ing symmetry is not just the symmetry under permutations of colors which
corresponds to a global rotation in the color space. It allows a local
recoloring at each bond, and thus is more like a gauge symmetry.3 Using
the recoloring symmetry a large number of eigenstates of the stochastic
matrix of the model can be computed exactly.(13) However these eigenstates
are not the low lying eigenstates, which determine the long time behavior
and hence the dynamical exponent z.

Note that the dynamics of the qDDE model can also be mapped to
the dynamics of a polymer chain on a q-coordinated regular lattice provided
that it is possible to color bonds of this lattice with q colors so that all the
q bonds meeting at any one site have different colors. For example, for
q = 3, we may choose the planar hexagonal lattice. As in the case of the
Bethe lattice, a qDDE configuration maps uniquely to a configuration of
a polymer chain. The null sector of the qDDE model with periodic bound-
ary conditions map onto the dynamics of a ring polymer on this lattice.
Note that this polymer ring is a "ghost ring" with no excluded volume
interactions and two strands of polymers can go through each other so that
entanglement effects are absent.

Time evolution in the qDDE model is diffusive in most sectors. The
precise decay of the time-dependent correlation functions is different in
different sectors, and depends on the IS of the sector. These different
behaviors can be understood in terms of the hard-core random walkers
with conserved spin (HCRWCS) model introduced in ref. 11. In this model,
the positions of the IS characters are treated as non-crossing random
walkers on a line. The corresponding dynamical exponent z = 2. The evolu-
tion is quite different in the null sector where there are no random walkers
(more generally, in sectors where the length of the IS is a negligible fraction
of L). In this sector the equal time spin-spin correlation function decays as
a function of the distance r as r - 3 / 2 . Thus the time-dependent spin-spin
autocorrelation function would be expected to vary as t - 3 / 2 z for large t.
Monte Carlo simulations and numerical diagonalization of the stochastic

3 Of course, we cannot change the color only at a finite number of sites of the Bethe lattice
without violating the constraint that all bonds meeting at a site have different colors.
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matrix for small systems shows that the exponent : % 2.5. Thus, in this case,
the growth of correlations in time is sub-diffusive.

5. DYNAMICS IN THE LARGE-q LIMIT

Consider the qDDE model on a chain of length L with open boundary
conditions. Here we restrict to only the null sector but our following
analysis is equally applicable to other sectors. In terms of polymer chain
configurations, we consider the case where both the end points of the chain
are fixed to be at the same site, i.e. at the origin. We divide the set of con-
figurations in this sector into equivalence classes such that all configura-
tions in a given equivalence class are related to each other by recoloring
symmetry. As an example, in Table I all the equivalence classes are shown
for L = 6 along with the number of configurations in each class. Each class
has a unique topology of polymer chain configuration on the Bethe lattice.
As an example the polymer chain configurations of equivalence classes C1,
C9 and C10 are shown in Fig. 4.

Note that for C8 — C 1 2 , each bond of the Bethe lattice is traversed
either twice or not at all by the polymer chain and these classes have more
configurations than the other classes. In general if the polymer chain
occupy n distinct bonds of the Bethe lattice, then the number of configura-
tions in the corresponding equivalence class is approximately q" for large q.

Table 1. Equivalence Classes under Recoloring Symmetry of the
qDDE Model in the Nul l Sector for L = 6a

Kquivalcnce class

c,
C2

c,
C4

C5

C6

C7

C8

C9
C10

C11
C12

Representative element

aaaaaa
aaaabb
aaabba
aabbaa
abbaaa
bbaaaa
abbbba
aabbcc
abbcca
abbacc
bbacca
abccba

Number of configurations

1
q ( q - 1 )
q ( q - 1 )
q(q-1)
q(q-1)
q(q-1)
q(q-1)
q ( q - 1 ) ( q - 2 )
q(q- 1)(q -2)

q(q-l )(q-1)
q(q -1)(q-1)
q(q-1)(q-1)

a Here a, b, c,... represent different colors. Colors which are adjacent but represented by
different symbols are assumed to be distinct. For example in C10, a ^ b and a ^ c, but b and
c need not be distinct.
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As in the steady state all configurations appear with equal probability, the
weight of an equivalence class in the steady state is directly proportional to
the number of configurations in it. This implies that in the q -* oo limit,
only those equivalence classes where the polymer chain traverses each bond
of the Bethe lattice exactly twice or not at all, will have a nonzero weight
in the steady state. For example in the L = 6 case, only the equivalence
classes C8 — C12 will have a nonzero weight in the steady state in the
q -> oo limit. If the state of the chain is examined at some instant in the
steady state, with probability 1 it will belong to one of the equivalence
classes C8 — C12. And the weight of all these equivalence classes are the
same in this limit, which we can take as 1. We shall call such classes long-
lived and the others short-lived.

In the steady state, a finite fraction of spins can flip at any instant. For
the spin at site i to flip it is necessary that at least one of its neighbors
(at site i— 1 or i+ 1) should have the same color. The probability for this
is given by P = 2qNL_2/NL, where NL is the number of configurations in
the null sector on a lattice of length L. As NL~ [ 4 (q— q ) ] L / 2 for large L,
P= 1/2 in the limit q -> oo.

We have already seen that, in the large q limit, with probability 1 the
equivalence class of a configuration in the steady state is long-lived. The
average time the system spends in a particular configuration is very small,
of order 1/qL. This is because in a typical configuration there are order of
L flipable pairs, and each such pair can go to any of the approximately q
other states with rate 1. However most of these transitions are within the
same equivalence class. For example, consider a local configuration of a
flipable pair | • • • abbc • • • >. If the pair bb changes its color to d which is
different from both a and c, then the resulting configuration is equivalent
to the old by recoloring symmetry. Short-lived classes have configuration of
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the type | • • • aaac • • • >, and within a time of order 1/q these will revert back
to one of the type | • • • abbc • • • > or | • • • bbac • • • >.

Thus, for large q, most of the dynamics of qDDE model involves
transitions within a long-lived equivalence class. The only allowed inter-
class transitions are from a long-lived to a short-lived equivalence class,
and vice versa. These occur with rate r, where F is of order 1. Let us con-
sider an allowed transition from equivalence class C to one C', where C is
long-lived and C' is short-lived. C' being short-lived, in a time of order l/q
it makes a transition to a long-lived equivalence class C". Let us say it goes
to long-lived classes C1", C"2,... with probabilities p1, p2,.... Therefore the
effective transition rate from the long-lived class C to Cj is Pj r. In this way,
in the limit of large q and for times » l/q, we have a coarse-grained
description of the stochastic evolution of the qDDE model as transitions
between different long-lived equivalent classes, and this effective dynamics
is Markovian with specified rates.

6. EQUIVALENCE TO THE INTERFACE MODEL

We now show that the effective dynamics of the qDDE model in the
large q limit is equivalent to the dynamics of the interface model defined in
Section 2. Let S , ( C ) denotes the substring corresponding to sites from 1 up
to and including i of a configuration C of the qDDE model. And let hi( C)
be the length of the IS corresponding to this substring S i(C). It is easy to
see that hi's are non-negative integers and hi+1 —hi = ± 1. The set {h i(C)}
will be the same for all configurations C in the same equivalence class C.
Hence the set { h i ( C ) } is a function of only the equivalence class C and we
may write it as { h i ( C ) } . Moreover the correspondence between long-lived
equivalence classes and { h i } is one to one in the case of open boundary
condition. Hence every long-lived equivalence class can be uniquely
represented by a set {h i}. We identify h i 's with the height variables of the
interface model defined in Section 2. Then, the transitions between these
equivalence classes in the qDDE model give rise to a Markovian time-
evolution of the interface model.

We now proceed to derive the transition rates for this interface
dynamics and show that they correspond to special values of A1, A2 and A3.

As hi represents the length of the IS of the substring up to site i, hi

changes only when the spins at sites i and i+ 1 in the qDDE model are
flipped. These can happen only if they have the same color, in which case
h i - 1 =h i + 1 . Again, as |hi+1 — hi| = 1, the only allowed transitions are of
the type

{...,h,h-1,h,...}<—>{..., M+!,/*,...}
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The rates for this transition will depend on the second neighboring heights
hi-2 and h i + 2 . To find the transition rates, let S be the local color con-
figuration at the sites i — 2 to i + 2. We write S as s1s2s3s4s5 , where s1, s2,
s3, s4 and s5 represents the color at sites i — 2, i — 1, i, i + 1 and i + 2 respec-
tively. Each Si can be any of the colors a, b, c, d,... and their different com-
binations will correspond to different local height configurations {hi} =
{..., h i _ 2 , hi-1, hi, hi+1, hi + 2,...}. We discuss them one by one.

Case I. { h i } = {..., h, h + 1, h, h + 1, h,...}. In this case S is given
by abbcc. Consider the transition cc -> bb. As a result S becomes abbbb. As
explained earlier, this state is very short lived. There are 3 pairs of b that
can flip. It is easy to see that flipping the first or the third bb pair does not
change hi. Flipping the middle bb pair increases hi to hi + 2. Since all the
3 bb pairs have equal change of flipping, the effective rate for the middle
pair to flip is 1/3. There is another possible way for hi-+hl + 2. Starting
from abbcc, first bb flips to cc and then the middle cc pair flips. Thus the
net effective rate for hi -> hi + 2 is 2/3 in this case.

Case II. { h i } = {..., h + 2, h + 1, h, h + 1, h,...}. In this case S is of
the type abcdd such that to the left of a there is one of each a, b and c with
fully reducible substrings in between them. Consider the transition dd -> cc.
The new S is abccc. The flipping of the first cc pair will increase hi by 2.
Whereas flipping of the second cc pair will not change hi. Since both these
pairs have equal change of flipping, the rate for hi ->hi + 2 is 1/2 in this
case.

Case III . {h^ ={..., h, h + l, h, h+l, h + 2,...}. For these heights
S is of the type abbcd. The only sequence of transitions which changes
ht is first bb -> cc, followed by the flipping of second cc pair. As in the
previous case the rate for this transition, which increases h, by 2, is 1/2 for
this case.

Case IV. {h^ = {..., h + 2, h + l, h, h + l, h + 2,...}. For this case
S is of the type abcde with no colors equal. Hence the transition rate out
of this local configuration is zero.

The remaining four cases corresponds to reverse transitions (hi -» hi — 2)
of the above four cases. For example, if the initial heights are {hi} =
{..., h — 2, h — 1 , h, h — 1 , h — 2,...}, hi can only decrease by 2 and it
corresponds to the reverse transition of Case I. Arguing as before, it is easy
to determine the rates of these reverse transitions, and they are found to be
the same as that of the corresponding h i->h i+ 2 transition. Thus the
qDDE model in the large q limit corresponds to the interface model of
Section 2 with ll = 2/3, 12 = A3 = 1/2.
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where L is the length of the lattice. The scaling function f ( x ) ->.vaz as
x->0 and it become a constant in the limit x-> oc. In Section 3 we have
shown that a = 1/2.

We have done Monte Carlo simulations for various lattice sizes. These
are shown in Fig. 5. These can be collapsed into a singe curve using the
scaling form (12) with a= 1/2 and the dynamical exponent z = 2.5. This is
shown in Fig. 6.

We have also determined the dynamical exponent z by numerical
diagonalization of the stochastic matrix for small systems and extrapolating
the results to infinite L. For numerical studies, it is more convenient to
work on a ring of size L with periodic boundary conditions.

Fig. 5. Average height <h> of the interface as a function of time for various lattice sizes.
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7. MONTE CARLO AND NUMERICAL DIAGONALIZATION
STUDIES OF THE INTERFACE MODEL

We have studied the interface model by using both Monte Carlo
simulations and exact numerical diagonalization of the stochastic matrix.
Monte Carlo simulations shows that the average height of the interface
shows a scaling form
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Fig. 6. Collapse of the various curves in Fig. 5. y - < h> L-1/2 is plotted as a function of the
scaling variable x = t/L5/2 for various lattice sizes.

However, the use of periodic boundary conditions has a different
meaning in the interface model and in the qDDE model. For the qDDE
model, periodic boundary conditions mean that if site 1 and site L have the
same color, they can flip together to a different color. In terms of the
polymer dynamics, this then corresponds to the dynamics of a ring
polymer, which diffuses on the Bethe lattice. For the interface model, the
periodic boundary conditions are naturally implemented by not holding
the end points of chain fixed, but joining them, and let them evolve as else-
where on the interface. But this is not consistent with the one-to-one
correspondence between configurations of the interface model and the
long-lived equivalent classes of the qDDE model, which requires that
height at origin be always zero. In fact, many distinct configurations of the
height model on a ring can correspond to same equivalence class under
recoloring of the qDDE model on a ring. For example, for L = 6, there are
only two distinct equivalence classes of qDDE model (corresponding to ci
or Y shaped ring polymers), but the height model with periodic boundary
conditions has 10 configurations. This difference between these models is
perhaps responsible for the different behavior of the logarithmic corrections
in the two models (see below).
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Our procedure of numerical diagonalization is very similar to the one
we have used in an earlier study of the TDE model.(21) Here we only briefly
out line our procedure. First we reduce the size of the matrix to be
diagonalized using symmetries like translation and reflection. Then we find
the second largest eigenvalue of the stochastic matrix by numerical
diagonalization. Since the largest eigenvalue is zero, this will give the gap
A in the eigenvalue spectrum. Assuming that the gap scales with system size
as z J / _ ~ L ~ 2 , we define an effective dynamical exponent,

The true dynamical exponent z is then obtained by extrapolating ZL to
L= oo. We were able to go up to L = 20. The size of the matrix to be
diagonalized is much smaller than that for the q = 3 case of the qDDE
model,(31) a simplification achieved in the q-> oo limit. We diagonalized the
stochastic matrix of the interface model for various values of A, keeping
A2 = A3= 1. The exponent obtained by extrapolating ZL to L = oo is about
2.8, and it depends on A1. In Fig. 7, we have plotted the value of A(L)

Fig. 7. Plot of A vs L on a Log-Log scale for A2 = A3 = 1 and different values of A1 = 0.75 (O),
1.0 (n ), 1.3333 ( A ) , 2 ( x ). Numerically determined values of the slope of these lines are 2.82,
2.90, 2.96 and 3.05.



74 Koduvely and Dhar

versus L on a log-log plot for various values of A,. The data do not falls
into parallel straight lines. Assuming that this is due to corrections to the
scaling of the gap, we tried scaling of the form

The best fit were obtained for values of z1 and z2 both very close to 2.5.
This suggested the extrapolation form

In Fig. 8 we have plotted 1/ML2.5) vs log(L) for various values of A1, keeping
A 2 = A3 = 1. Note that the plot involves no fitting parameters, except for the
exponent 2.5. The constant a in equation (15) just gives an overall shift to
the plot and hence can be taken to be 1. We find that all points falls into
straight lines, which gives us some confidence that equation (15) is likely
to be the correct scaling form.

To see if the logarithmic correction term is responsible for the poor
convergence of observed effective dynamical exponent in the earlier exact
diagonalization study of the TDE and 3-color qDDE models,(12,13) we

Fig. 8. Plot of y= l / (TL 2 . 5 ) vs log(L) for A) A2 = L3= 1 and different values of A1 =0.75 (O),
1.0 ( D ) , 1.3333 ( A ) , 1.5 ( + ), 2 ( x ), B) for the 3-color qDDE model (O) .



have also plotted earlier data for the 3-color qDDE model in Fig. 8. The
graph is again fairly linear with very small negative slope. As a negative
slope is not possible asymptotically, we conclude that the 3-DDE model
shows no evidence of a logarithmic correction term.

We do not understand fully the reason for the different scaling of gap
with L in the qDDE model and the interface model for periodic boundary
conditions. Certainly, it comes from the already-mentioned fact that the
periodic boundary conditions in the two cases mean different things. To be
more specific, making the boundary conditions periodic in the interface
model involves enlarging the space of configurations to include those con-
figurations where the height at x = 0 is not zero. [ It is easy to see that in
this case the total number of allowed height configurations is approxi-
mately L times the number of different equivalence classes of the qDDE
model.] Thus, the relaxation matrix is much larger for the height model
than for the qDDE model, and there are many extra modes. The eigen-
values of some of these extra modes fall in the gap of the qDDE model. We
emphasize that this phenomena is boundary-condition dependent. For
open boundary conditions, we have shown that the two models are exactly
equivalent in the large q limit. All bulk correlation functions which are
independent of boundary conditions will behave the same way in the two
models (and presumably not show any log-corrections to scaling).

8. CONCLUDING REMARKS

It is of some interest to study this model when the rate h -»h + 2 is dif-
ferent from the rate of the reverse transition. In the particle language, this
corresponds to making the rates of the leftward hops of particles different
from the rightward ones. When A4 is non-zero, this changes the dynamical
exponent from the Hammersley-Edwards-Wilkinson value 2 to the KPZ
value 3/2. When A4 is zero, the effect of adding asymmetry is much
stronger. In this case, it is easy to see that we can define a Hamiltonian
function ^ = — A ^ / h i , such that the transition rates satisfy detailed
balance with respect to this JV. Here A is a constant, which depends on the
microscopic rates. The probability of a configuration in the steady state is
then given by the Boltzmann factor exp( — 3f}. Let r be the ratio of the
rates for h -»h +1 and h -> h — 2. When r « 1, starting from a configura-
tion where the minimum height is zero, the interface prefer to move
downwards. Because of the conservation of minimum height, at any point
the height cannot decrease for ever. In this case the steady state would con-
sists of the profile h, = Q (1) for i even (odd) and small fluctuations about
this (or hi= 1 (0) for i even (odd), depending up on the initial profile). In
the particle language this corresponds to an "antiferromagnetic" type of
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order (0101 ...). This interface is similar to an interface which is adsorbed to
a wall. When r = 1 we know that the interface is not bound to the wall.
Hence there is presumably a phase transition from a wet (bound) phase to
a non-wet phase as r increases from 0 to 1. We have not yet studied the
model in detail to find the nature of this transition. Recently Hinrichsen et
al. has studied a non-equilibrium SOS interface model in the presence of a
wall that shows a similar wetting transition.(26) When the rate r » 1, the
steady state consists of small fluctuations about a single mountain profile
with maximum height approximately equal to the maximum possible value
L/2. In particle language this corresponds to a phase separation with all
particles coming together in one half of the lattice. If we start with a ran-
dom configuration of particles and holes, such a system will coarsen with
time. But the coalescence process needs crossing free-energy barriers. In
order to merge two islands of size /, needs an activation energy of order /.
As a result the average domain size grows only logarithmically with time.
Again, a detailed study has not done so far. Similar models, showing phase
separation in one-dimensional systems with local evolution rules, have
recently been studied by other authors. Lahiri and Ramaswami(27) studied
a 1-dimensional lattice model of sedimenting colloids, which also shows
logarithmic coarsening with time. Evans et al.(28) have rigorously proved
the existence of phase separation in a driven diffusive model involving 3
species of particles.

It is easy to construct higher dimensional interface growth models
having the property that minimum of heights is conserved locally. These
are however may not realizable as the q -» oo limit of higher dimensional
qDDE models. Consider an interface model on a square lattice where the
heights h(i, j) are integers and nearest neighbor slopes takes values ±1.
The growth rule is that h(i, j) -»h(i, j) + 2, if all neighbors have height
h(i, j} + 1 and at least one of the 4 second neighbors ((i ± 2, j), (i, j±2))
has height h(i, j). Reverse transition takes place with the same rate. In this
model also Min({h(i, j ) } ) is conserved. Mountain craters analogue of that
in Fig. 2 are easy to construct such that it takes a long process of restruc-
turing to go from one to another.

Another simple variant of this model which avoids the odd-even sub-
lattices is the following: We consider an RSOS model with an integer
height coordinate h(i, j) at the site (i, j) of a square lattice. The difference
in heights at two adjacent sites is constrained to be one of three values:
— 1, 0 or 1. Thus we allow neighboring sites to have the same height. In
the initial configuration, h(i, j) = 0 for all sites (i, j). The transition rule is
that h(i, j) -> h(i, j) + 1 with rate 1, if this would not violate the RSOS con-
straint in the final state, and if at least one of the neighbors have the same
height as (i, j) in the initial state. The reverse transition also occurs at the
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same rate. Clearly this also gives rise to a fluctuating surface whose mini-
mum height value does not change in time. A detailed investigation has not
yet been undertaken.
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